Stm32f103c8t6 st link v2

Stm32f103c8t6 st link v2

Итак, сегодня распишу немного по тому, как программировать ваши микроконтроллеры, из которых вы сделали всевозможные устройства. Не будем же мы только отладочную плату мучать .

Контроллеры STM32 можно прошить двумя путями.
1) Через встроеный бутлоадер (бутлоадер, это такая маленькая программка внутри каждого микропроцессора STM32, которая прикидывается программатором — это если по простому). Прошивка в таком варианте происходит через UART (для связи с компьютером используется переходник USB>COM)

2)Внешним программатором. Из внешних программаторов на данный момент есть большой выбор. Это может быть и ваша отладочная плата STM32 Discovery, и китайский аналог ST-LINK V2 mini, и оригинальный ST-Link.

Первым вариантом я не пользовался, но сложного в нём вроде ничего нет. Нужно скачать утилиту STM32 ST-LINK Utility и на вашем прошиваемом микроконтроллере выставить определённый сигнал на ножкеножках BOOT0BOOt1. Допустим возьмём для примера самый дешёвый и простой микроконтроллер STM32F030F4P6 в корпусе TSSOP20. У него есть ножка BOOT0, которую если мы замыкаем на массу — то у нас контроллер будет прошиваться через SWD (то есть от внешнего программатора), а если на эту ножку подать напряжения питания, то контроллер будет стартовать с встроенного бутлоадера, и ждать пока мы его прошьём через UART, то есть с помощью программы ST-LINK Utility.

Вторым вариантом намного проще работать, так как помимо того что вы можете прошивать свои микроконтроллеры так ещё и в режиме реального времени отлаживать свои программы (дебажить))
Для прошивки в таких случаях используется всего 4 ножки (по минимуму)
1)Vcc — питание 3 Вольт
2)VSS(Gnd) — масса
3)SWCLK
4)SWDIO

Такой вариант подключения для прошивки используется в том случае, если вы не сконфигурировали ножки SWCLK и SWDIO в качестве портов ввода-вывода. Если же вы эти ножки используете в качестве портов ввода-вывода, то прийдётся ещё подключать "физичесу" линию сброса. — RST . В таком варианте у нас получается 5 проводов для подключения
1)Vcc — питание 3 Вольт
2)VSS(Gnd) — масса
3)SWCLK
4)SWDIO
5)NRST

Вот так выглядит распиновка на плате STM32F4Discovery разъёма для программирования внешних микроконтроллеров. Пин VDD_Target является пином, для снятия показаний напряжения с прошиваемого устройства. Этот если по простому — для согласования уровня напряжений между программатором и прошиваемым устройством.

Вот так выглядит разъём программатора ST-LINK V2 mini. В нём есть дополнительные средства для работы с STM8 и т.д, поэтому для работы с STM32 нам нужны пины
1)Vcc — питание 3 Вольт
2)SWDIO
3)VSS(Gnd) — масса
4)SWCLK
10)NRST

Вот так выглядит схема подключения для прошивки нашего простейшего микроконтроллера STM32F030F4P6

Как видите, никаких заморочек нет. На этом думаю всё, если будут вопросы, то пишите в коментах, я добавлю эти нюансы в статью.

Микроконтроллеры STM32 приобретают все большую популярность благодаря своей мощности, достаточно разнородной периферии, и своей гибкости. Мы начнем изучать STM32F103C8T6, используя бюджетную тестовую плату, стоимость которой не превышает 2 $ (у китайцев). Еще нам понадобится ST-Link программатор, стоимость которого около 2.5 $ (у китайцев). Такие суммы расходов доступны и студентам и школьникам, поэтому именно с такого бюджетного варианта я и предлагаю начать.


Этот микроконтроллер не является самым мощным среди STM32, но и не самый слабый. Существуют различные платы с STM32, в томе числе Discovery которые по цене стоят около 20 $. На таких платах почти все то же, что и на нашей плате, плюс программатор. В нашем случае мы будем использовать программатор отдельно.

Микроконтроллер STM32F103C8. Характеристики

  • Ядро ARM 32-bit Cortex-M3
  • Максимальная частота 72МГц
  • 64Кб Флеш память для программ
  • 20Кб SRAM памяти
  • Питание 2.0 … 3.3В
  • 2 x 12-біт АЦП (0 … 3.6В)
  • DMA контролер
  • 37 входов / выходов толерантных к 5В
  • 4 16-розрядних таймера
  • 2 watchdog таймера
  • I2C – 2 шины
  • USART – 3 шины
  • SPI – 2 шины
  • CAN
  • USB 2.0 full-speed interface
  • RTC – встроенные часы

На плате STM32F103C8 доступны

  • Выводи портов A0-A12, B0-B1, B3-B15, C13-C15
  • Micro-USB через который можно питать плату. На плате присутствует стабилизатор напряжения на 3.3В. Питание 3.3В или 5В можно подавать на соответствующие выводы на плате.
  • Кнопка Reset
  • Две перемычки BOOT0 и BOOT1. Будем использовать во время прошивки через UART.
  • Два кварца 8Мгц и 32768 Гц. У микроконтроллера есть множитель частоты, поэтому на кварце 8 МГц мы сможем достичь максимальной частоты контроллера 72Мгц.
  • Два светодиода. PWR – сигнализирует о подачи питания. PC13 – подключен к выходу C13.
  • Коннектор для программатора ST-Link.

Итак, начнем с того, что попробуем прошить микроконтроллер. Это можно сделать с помощью USB-Uart переходника на базе микросхемы FT232 через USART, или с помощью программатора ST-Link.

Скачать тестовый файл для прошивки можно здесь. Программа мигает светодиодом на плате.

Прошивка STM32 с помощью USB-Uart переходника под Windows

В системной памяти STM32 есть Bootloader. Bootloader записан на этапе производстве и любой микроконтроллер STM32 можно запрограммировать через интерфейс USART с помощью USART-USB переходника. Такие переходники чаще всего изготавливают на базе популярной микросхем FT232RL. Прежде всего подключим переходник к компьютеру и установим драйвера (если требуется). Скачать драйвера можно с сайта производителя FT232RL – ftdichip.com. Надо качать драйвера VCP (virtual com port). После установки драйверов в компьютере должен появиться виртуальный последовательный порт.

Подключаем RX и TX выходы к соответствующим выводам USART1 микроконтроллера. RX переходника подключаем к TX микроконтроллера (A9). TX переходника подключаем к RX микроконтроллера (A10). Поскольку USART-USB имеет выходы питания 3.3В подадим питания на плату от него.

Читайте также:  Аппарат для опрессовки труб отопления

Чтобы перевести микроконтроллер в режим программирования, надо установить выводы BOOT0 и BOOT1 в нужное состояние и перезагрузить его кнопкой Reset или выключить и включить питание микроконтроллера. Для этого у нас есть перемычки. Различные комбинации загоняют микроконтроллер в различные режимы. Нас интересует только один режим. Для этого у микроконтроллера на выводе BOOT0 должно быть логическая единица, а на выводе BOOT1 – логический ноль. На плате это следующее положение перемычек:

После нажатия кнопки Reset или отключения и подключения питания, микроконтроллер должен перейти в режим программирования.

Программное обеспечение для прошивки

Качаем с сайта st.com программу Flash Loader Demonstrator для STM32. Flash Loader Demonstrator – программа для прошивки STM32 через последовательный интерфейс.

После включения схемы с правильно выставленными перемычками контроллер готов к работе с Flash Loader Demonstrator.

Запускаем Flash Loader Demonstrator и выбираем порт с которым будем работать, и устанавливаем параметры порта.

После выбора параметров порта нажимаем Next после чего должны увидеть «светофор» и информацию по микроконтроллеру. Если этого не происходит, тогда проверяем корректность установленных параметров связи и проверяем действительно ли микроконтроллер введен в режим программирования.

Нажимаем Next,

На этой странице выбираем файл для загрузки в микроконтроллер. Файл может быть в формате bin или hex.

Нажимаем Next и ждем.

Чтобы вывести контроллер из режима программирования, возвращаем перемычки в исходное состояние и нажимаем кнопку Reset. Программа в микроконтроллере должен заработать.

Прошивка STM32 с помощью USB-Uart переходника под Linux (Ubuntu)

Устанавливаем stm32flash

Если используем USB-UART переходник, имя порта буде примерно такое /dev/ttyUSB0


рекомендуется к прочтению

Архитектуру STM32 можно мысленно разделить на две части. Первая часть, это ядро Cortex-M3, которое спроектировали в ARM и которое примерно одинаковое для всех. "Примерно", потому что, содержит опциональные модули которые могут быть у одного производителя и отсутствовать у другого. Вторая часть, это периферия знакомая по STM8, с тем отличием, что был добавлен USB2.0 интерфейс, хотя точнее было бы сказать, что этот интерфейс был "откручен" от STM8(такая у STM политика: хочешь аппаратный USB, используй STM32).

    Справочники и руководства которые нужны для работы c STM32F103x8/STM32F103xB:

  1. Справочное руководство по 32-битным микроконтроллерам серий STM32F10x Reference Manual. STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx advanced ARM®-based 32-bit MCUs или RM 0008
  2. Руководство на чипы STM32F103x8/STM32F103xB STM32F103x8 STM32F103xB Medium-density performance line ARM®-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com. interfaces
  3. Ядро Cortex — МЗ компании ARM. Полное руководство. Книга не обязательная, но на мой взгляд очень полезная.
    Небльшой ликбез по ARM и Cortex-M3 в частности:

  • Cortex-M3 основан на архитектуре ARMv7 и является усеченным вариантом архитектуры ARMv7 специально для микроконтроллеров. По сравнению с полноценным ЦПУ Cortex-A, здесь отсутствует кеш и 32-битный альтернативный набор команд ARM. Также могут отсутствовать некоторые модули, такие как модуль зашиты памяти — MPU (Memory Protect Unit).
  • Cortex-M3 включает в себя 16-битный набор команд, оптимизированный для систем с малым объемом памяти, Thumb и 32-битный дополнительный набор Thumb-2. Здесь 16-битная команда означает, что ее двоичное представление будет занимать в памяти 16-бит, т.е. она более компактная. Программный код может состоять из произвольного набора 16-битных команд Thumb и 32-битных Thumb 2.
  • В Cortex-M3 имеется аппаратное деление и умножение. Урезанная, удешевленная версия Cortex-M0 базируется на архитектуре ARMv6 и таких инструкций не имеет. ARMv6 отличается от ARMv7 отсутствием набора инструкций Thumb-2. Cortex-M4, напротив, дополнен DSP модулем, а Cortex-M4F также включает в себя FPU модуль, т.е. он аппаратно поддерживает числа с плавающей запятой.
  • Номера процессоров ARM никак не согласованы с версиями архитектур. Процессоры ARM11 имеют архитектуру ARMv6, а ARM9 имели архитектуру ARMv4.
  • Cortex-M3 имеет единую адресную 32-битную шину, которая может адресовать 4Гб памяти. Процессор построен по гарвардской архитектуре и имеет отдельные шины для памяти данных SRAM и памяти программ Flash. Программа может быть запущена из SRAM, тогда будет задействована только одна шина и код будет выполняться медленнее.
  • Cortex-M3 имеет шестнадцать 32-битных РОН (регистров общего назначения) R0-R15. Команды из набора инструкций Thumb могут обращаться только к регистрам R0-R7. Команды из набора Thumb-2 могут обращаться ко всем регистрам. При этом, регистр r13 — это указатель стека, r14 — регистр связи(хранит адрес возврата из подпрограммы), r15 — счетчик команд.

Немного о STM32:

Выпускаемые линейки микроконтроллеров изображены на следующей картинке:

Это не полный перечень, но представление давать должен. Кроме линеек, микроконтроллеры делятся по размерам flash-памяти. Чем больше flash-пямять, тем больше остальной периферии. Для 103-й линейки это выглядит так:

Блок-схема устройства STM32F103 представлена на картинке ниже:

Во всем этом хозяйстве нас будет больше всего интересовать периферия подключенная к периферийным шинам APB1 и APB2. Также полезно будет запомнить внутреннюю шину AHB.

Имеющаяся в чипах периферия перечислена в следующей табличке:

Выбор "железа"

Чип который у меня оказался под рукой — STM32F103CBT6 запаянный в плату Maple Mini:

Заказав его год назад на Али, я ради интереса загрузил в него несколько скетчей, и набалововшись бросил на полку. За этот год проект Leaf Maple накрылся медным тазом, сайт поменял содержимое, а поддержку железа передали на следующий форум: STM32 for Arduino. Я особо не расстроился, т.к. не питал особых надежд на этот проект, и планировал плату использовать для Си-программирования.

Читайте также:  Автоматические насосные станции водоснабжения для частного дома

Кстати, на упомянутом выше сайте есть хороший классификатор с образчиками результатов работы китайской промышленности, содержащих чипы STM32F103, очень рекомендую ознакомится: STM32F103 boards

Если у кого-то имеется под рукой "Blue Pill", то это не беда, там установлен чип STM32F103C8T6 который от STM32F103CBT6 отличается только уменьшенным до 64кБ размером flash-памяти. Еще там светодиод подключен на PC13, в то время как на MapleMini он на PB1, и кроме этого у Maple Mini имеется кнопка на PB8.

Зато на "Blue Pill" имеется штыревой разъем для подключения программатора ST-LINK, в то время как Maple Mini нужно устанавливать в макетку что бы прошить по SWD. Прозвонкой чипа было выяснено, что на Mapple Mini SWDIO контакт "висит" на 22-pin, а SWCLK на 21-м. Но заставить работать ST-LINK с Maple Mini оказалось не просто.

Прошивка чипов через программатор ST-LINK v2

STM32 можно прошить либо через UART встроенным загрузчиком, либо через SWD-интерфейс программатором ST-LINK. Меня интересовал второй вариант, т.к. был скромным владельцем клона ST-LINK v2.

В Windows прошить STM32 через ST-LINK можно воспользовавшись фирменной утилитой "STM32 ST-LINK Utility", или непосредственно из среды разработки IAR for ARM. В Linux можно воспользоваться консольной утилитой sy-flash.

Если у вас "Blue Pill" или еще какая-либо плата отличная от Leaf Maple, то никаких проблем не будет, их можно сразу прошивать. Моя же Maple Mini никак не хотела видеться программатором, пока я не догадался во время загрузки программы из IAR в чип, несколько раз нажать на кнопку Reset на плате. После чего Maple Mini начала свободно прошиваться, но родной USB-загрузчик был на этом этапе потерт. Но это мелочи.

Ок. Посмотрим как чипы прошиваются в Windows. Войдя на сайт http://my.st.com и залогинившись, введем в строку поиска "st-link". На выходе получим такую табличку:

Щелкнув мышкой по второй строчке и промотав открывшуюся страницу книзу, увидим список предлагаемого ПО для программатора:

STSW-LINK004 — это утилита для прошивки STM32 чипов. STSW-LINK007 утилита для обновления прошивки программатора, STSW-LINK009 — драйвера для различных версий Windows. Немного выше предлагаются свежие прошивки для самого программатора. ST-LINK v2.

Как установить драйвер для ST-LINK v2 я рассказывал здесь: STM8 + IAR + ST-LINK2: программирование, прошивка и отладка из под Windows, поэтому далее будем считать, что драйвер уже установлен.

После установки и запуска "STM32 ST-LINK Utility" следует подключить ST-LINK v2 к компьютеру или виртуальной машине(мой случай), а к ST-LINK в свою очередь, должен быть подключен чип который следует прошить:

После чего следует пройти по меню: "меню-> Target — > Settings. " и должно появится такое окно:

Во-первых, сам программатор ST-LINK V2 должен быть опознан программой, показана версия его прошивки. Во-вторых должен быть опознан чип подключенный к программатору. В третьих, рабочий протокол должен быть установлен как SWD, а не JTAG.

Когда я впервые воткнул ST-LINK полученный год назад с Али, мне вместо номера прошивки показывало что-то вроде "Old firmware", поэтому мне пришлось воспользоваться утилитой обновления прошивки ST-LINK, что бы флешеры нормально работали с моим клоном ST-LINK. К сожалению у меня не сохранились скрины.

Здесь у меня изначальная версия прошивки(цифра после буквы J) была то ли 20, то ли 21. В итоге меня обновили то текущей версии. Кстати, из под виртуальной машины обновляется прошивка без проблем.

Вернемся к STM32 ST-LINK Utility. После нажатия кнопки "Ок" в окне "Settings", появится рабочее окно программы:

Следует запомнить, что стартовый адрес флеш-памяти начинается с 0x08000000. Встроенная оперативка начинается c 0x20000000. Чтобы программа стартовала с оперативки, контакты boot0 и boot1 должны быть сконфигурированы специальным образом.

Щелкнув по вкладке "binary file" можно выбрать файл с прошивкой, затем пройдя по "меню->Target->Program. " эту прошивку можно прошить в микроконтроллер:

Наряду со знакомым форматом прошивок HEX, в stm32 широко используется бинарный raw-формат "*.bin".

Через меню "File->Save As" можно сохранить прошивку чипа в файл:

Если честно, слить пошивку с чипа и потом залить ее обратно так, чтобы она работала, мне не удалось. Нужно будет разбираться.

Еше интересной штукой являются Option Bytes знакомые по STM8:

Пока не будем их трогать.

Теперь, что касается st-flash для Linux, то там с одной стороны все проще, а с другой — сложнее. Сложнее, потому что глючит. Может к этим глюкам как-то можно привыкнуть, но я пока не сумел.

Пока я обнаружил такую закономерность, команда очистки флеш-памяти "st-flash erase" помогает избавиться от глюков:

Программирование STM32 с помощью IAR и SPL в Windows

Если на сайте http://my.st.com ввести в строку поиска "stm32f10x standard peripheral library" то нам предложат скачать SPL для чипов STM32F10x:

В отличии от SPL для STM8, библиотека разделена на CMSIS и саму SPL. CMSIS (Cortex® Microcontroller Software Interface Standard) — это стандарт описания периферии микроконтроллера, то что в STM8 размещалось в файлах stm8s.h/stm8l.h

Подключить SPL к IAR достаточно просто, в сети множество видео и пошаговых инструкций. Я лично делал по этому видео: STM32 Discovery IAR and StdPeriph Lib настройка и загрузка проекта

Проект компилируется и заливается в чип, после чего успешно работает. Наверное больше и не надо, но я предлагаю забрать результирующий объектный файл с расширением *.out и перенести его в Linux, для внимательного изучения:

Читайте также:  Баня на колесах екатеринбург заказать

Программирование STM32 с помощью Eclipse и SPL в Linux

В Linux попробуем посмотреть, что за файл генерирует на выходе IAR:

Как видим, это обыкновенный эльф. Смотрим дальше:

Из "эльфа" мы всегда можем получить файл прошивки в HEX формате:

или бинарный файл:

Также можно посмотреть ассемблерный код:

Даже можно попытаться загрузить на чип в режиме отладки. Для этого понадобиться сервер st-util который входит в набор утилит st-flash и сам отладчик gdb.

Подключаемся к ранее запущенному серверу:

Ставим точку останова и запускаем на исполнение:

Но при попытке распечатать исходный листинг программы выдаст сообщение об ошибке:

кое-что сделать конечно можно

На этом этапе думаю лучше оставить прошивку с IAR в сторону, и попытаться скомпилировать нормальный объектный файл в Linux.


некоторые не ищут легких путей.

Проблема в том, что нельзя вот так просто взять компилятор, исходный текст и скомпилировать прошивку для stm32. Почему? Потому что в опциях gcc компилятора можно указать только тип архитектуры "cortex-m3", а чипов на этой архитектуре выпускаются различными фирмами — тьма тьмущая. И у всех них разные карты памяти и периферия. Как минимум понадобиться скрипт линкера для вашего чипа.

О масштабах проблемы можно почитать например тут: ARM-ы для самых маленьких: тонкости компиляции и компоновщик. Более-менее толковый самопальный Makefile который мне удалось найти можно взять тут: Еще один шаблон проекта под STM32 на gcc.

После некоторых размышлений я решил взять в качестве основы сборочные файлы из какого-нибудь IDE. Традиционным IDE для ARM в Linux стал Eclipse, который ненавидят наверно все linux-пользователи за глючность и тормознутость. Справедливости ради, должен упомянуть, что генерации проектов существует специальная фирменная утилита STM32CubeMX. Но может ли она генерировать проекты для gcc или нет, я не знаю.

Поддержка ARM в Eclipse ставится через плагин: GNU ARM Eclipse

На странице установки предлагается несколько способов установки ARM плагина. Но, например, на LinuxMint мне этот плагин установить не удалось. В репозитории какая-то древняя версия Eclipse 3.8, это версия от 2012(!) года. И установка плагина заканчивается фейлом:

Поэтому пришлось вспомнить про старую добрую Slackware GNU/Linux. В этом году вышла новая версия 14.2.

Для начала нужно будет скачать ARM toolchain c сайта ARM:

Скачанный архив я распаковал в /usr/local

Теперь чтобы скачать Eclipse, зайдем в репозиторий и введем в строку поиска "eclipse-cpp":

После чего попадаем на страницу с пакетом:

Т.к. уменя Слакваръ 64-битная, то для установки выполняем следующие манипуляции:

Поставив Eclipse мы сделали полдела. Еще нужно поставить jdk. C 6-й и 8-й версии JDK Eclipse отказывался работать и вылетал. С 7-й тоже глючит, но кое-как работает. В гугл вбиваем "java jdk 7 download" попадем на страницу: Java SE Development Kit 7 Downloads

Теперь можно запускать Eclipse:

Жмем OK, это будет рабочий каталог проектов:

Далее открываем Marketplace:

В строку поиска вводим ARM:

и щелкаем по "install"

Перед установкой нужно будет принять условия лицензии:

Если погода на Марсе будет солнечной, то в конце установки предложат перезагрузить Eclipse:

После перезапуска Eclipse создаем новый проект:

В открывшийся форме нужно будет заполнить имя нового проекта и выбрать его тип:

В следующей форме необходимо выбрать параметры чипа. Замечу, что по дефолту(поле Content) предлагается не пустой проект, а проект с blink’ом:

Следующую форму можно оставить как есть:

Здесь нужно указать путь к папке toolchain’ом:

Осталось закрыть окно "Welcome"

И перед нами открывается окно проекта:

Это совсем не тот простенький Blink который был в IAR. Здесь задержки формируются по таймеру и кроме этого используется модуль трассировки. Задать номер pin’а к которому подключен светодиод, можно в файле Blinky.h

Чтобы задать светодиод на PB1 нужно константы BLINK_PORT_NUMBER и BLINK_PIN_NUMBER установить в единицы. После чего можно скомпилировать проект:

Если все прошло удачно, то можно закрыть проект и перейти в консоли в папку проекта:

Там будет объектный файл прошивки. Получаем бинарный файл:

Если, опять же все нормально, то светодиод начнет мигать с интервалом в одну секунду. Заливать прошивку можно и из Eclipse, но эта IDE меня интересует только как генератор проектов.

Попробуем взглянуть на makefile файл который лежит в этой же папке:


некоторые вещи бывает сложно объяснить

Пробуем еще раз загрузить полученный файл в отлдачик. Запускаем сервер:

подключаемся к серверу:

ставим точку останова:

Запускаем на выполнение:

Выполнение программы приостонавливается на точке останова. Смотрим листинг:

В этот раз все в прорядке. Однако если мы еще раз дадим команду continue, то будет возможно, неожиданный эффект:

Программа останавливается по сигналу SIGTRAP и дальше ни в какую не идет.

Проблема кроется в отладочном интерфейсе semihosting, которого как понимаю, в чипе просто нет, но который позволяет выводить отладочные сообщения через функцию trace_printf().

Чтобы решить эту проблему, нужно в Eclipce через меню->project->proporties, открыть вкладку Settings в "C/C++ Build":

В настройке препроцессора следует удалить макроопределение OS_USE_TRACE_SEMIHOSTING_DEBUG. После чего пересобрать проект. и полученный объектный файл заново загрузить в отладчик:

Посмотрим что нам пытаются вывести:

здесь вроде все нормально

Посмотрим значение переменной seconds:

Почему то у меня после blink_on() светодиод гаснет, а после blink_off() наоборот загорается

Ссылка на основную публикацию
Adblock detector