Основные схемы обработки материалов резанием

21.1. Общие сведения о процессе резания металлов

Обработкой конструкционных материалов резанием называется процесс отделения режущими инструментами слоя материала с заготов­ки для получения детали нужной формы, заданных размеров и шероховатости поверхностей.

В последнее время широко используют экономичные методы получения заготовок, что приводит к значительному уменьшению объема работ, связанных со снятием стружки (точное литье, точная штамповка, холодная высадка и др.). Но в настоящее время большинство деталей машин получает окончательную форму и размеры обработкой резанием на металлорежущих станках. Только эта обработка удовлетворяет возрастающие требования к точности размеров и тщательности отделки поверхностей.

Обработка резанием определяет качество изготовляемых машин, их точность, долговечность, а также надежность и стоимость. Несмотря на то, что методы получения заготовок и обработки их на металлорежущих станках беспрерывно совершенствуются, трудоемкость станочных работ в машиностроении составляет наибольшую часть, достигая 30—50 % общей трудоемкости изготовления машин.

Процесс резания представляет собой комплекс чрезвычайно сложных явлений, зависящих от физико-механических свойств обрабатываемого материала, качества режущего инструмента, условий резания, состояния станка, жесткости технологической системы.

Процесс резания сопровождается упругими и пластическими деформациями, разрушением материала, трением, износом режущего инструмента, вибрациями отдельных деталей и узлов и технологической системы (станок-приспособление-инструмент-деталь) в целом. Знание закономерностей этих явлений позволяет выбирать оптимальные условия, обеспечивающие производительную и качественную обработку деталей.

21.2. Виды заготовок и припуск на обработку

На металлорежущих станках из заготовок получают окончательно готовые детали. В зависи­мости от материала, формы и размеров обрабатываемой на станке детали, а также характера производства основные типы металлических заготовок следующие: отливки из чугуна, стали и цветных сплавов; поковки и штамповки из стали и цветных сплавов; сортовой прокат из стали и цвет­ных сплавов, который поступает в виде прутков и разрезается на отдель­ные заготовки.

Припуском называется слой металла, удаляемый с заготовки при обработке. На рис. 21.1 показаны ступенчатый валик и его цилиндри­ческая заготовка (пунктиром) с припуском на обработку (заштрихован). От правильности выбора припусков зависят рациональный расход ме­талла и экономичность обработки.

Рис. 21.1. Эскиз детали с припусками на обработку.

21.3. Рабочие, установочные и вспомогательные движения в металлорежущих станках

Для обработки реза­нием (точения, сверления, фрезерования и др.) заготовка и режущий инструмент должны совершать определенные движения. Они подразделя­ются на рабочие, или движения резания, установочные (настроечные) и вспомогательные. Рабочие движения предназначены для снятия струж­ки, а установочные и вспомогательные — для подготовки к этому про­цессу.

Установочные — движения рабочих органов станка, с помощью ко­торых инструмент по отношению к заготовке занимает положение, по­зволяющее снимать с нее определенный слой материала.

Вспомогательные — движения рабочих органов станка, не имеющие прямого отношения к резанию. Примерами служат: быстрые перемеще­ния рабочих органов, переключение скоростей резания и подач и др.

Рабочие движения подраз­деляются на главное движение и движение подачи. С помощью главного движения осуществляется снятие стружки, а движение подачи дает воз­можность начатое резание распространить на необработанные участки поверхности заготовки. Например, при сверлении вращение сверла является главным движением, позволяющим начать резание при сопри­косновении сверла с заготовкой, а перемещение сверла вдоль оси явля­ется движением подачи, дающим возможность распространить процесс на последующие объемы металла и, таким образом, просверлить необ­ходимое отверстие.

В металлорежущих станках главное движение чаще всего бывает вращательным (токарные, сверлильные, фрезерные, шлифовальные станки) или прямолинейным (возвратно-поступательным — строгальные и долбежные станки). Главное движение может сообщаться заготовке (станки токарной группы, продоль­но-строгальные станки) или режущему инструменту (фрезерные, сверлиль­ные, поперечно-строгальные станки).

В станках с главным вращательным движением подача непрерывна и резание также непрерывно. В станках с возвратно-поступательным дви­жением рабочий ход чередуется с холостым, движение подачи осуществля­ется перед началом каждого рабочего хода и, следовательно, резание прерывисто.

Основные методы обработки резанием

Точение (рис. 21.2, а). Главным движением со скоростью V в этом случае является вращение заготовки 2 вокруг оси, а движением подачи — поступательное перемещение инструмента 1 относительно заготовки (вдоль ее оси, перпендикулярно или под углом к ней).

Рис. 21.2. Схемы основных методов обработки резанием

Точением обрабаты­вают преимущественно поверхности вращения на токарных, карусель­ных, револьверных, расточных станках, токарных автоматах и полуав­томатах. Оно применяется для обработки цилиндрических, конических и фасонных внешних и внутренних поверхностей, торцовых поверхностей, а также для нарезания резьб.

Сверление (рис. 21.2, б). При обработке отверстий на сверлильных станках главным движением является вращение инструмента 1, а дви­жением подачи — перемещение инструмента вдоль своей оси. Так обра­батывают отверстия в сплошном материале 2 или увеличивают размеры имеющихся отверстий. Сверлить можно также на токарных, револьверных, расточных, фрезерных станках, токарных автоматах и др. При сверле­нии отверстий на станках токарной группы главным движением явля­ется вращение заготовки, а движением подачи— перемещение сверла вдоль оси. Чтобы получить более точные отверстия, после сверления их необходимо зенкеровать, растачивать или развертывать.

Фрезерование (рис. 21.2, в). При фрезеровании главным движением является вращение инструмента 1, а движением подачи — поступательное перемещение заготовки 2 или фрезы. Применяя различные фрезы и фрезерные станки, можно обрабатывать разные поверхности и их комбинации: плоскости, криволинейные поверхности, уступы, пазы и др.

Строгание (рис. 21.2, г). Главным движением при строгании явля­ется возвратно-поступательное перемещение резца 1 у поперечно-строгальных станков или заготовки 2 в продольно-строгальных. Движением подачи является периодическое перемещение заготовки или резца. Чаще всего строгание используют для обработки плоскостей.

Протягивание (рис. 21.2, д) осуществляют с помощью специальною инструмента — протяжки 1, имеющей на рабочей части зубья, высота которых равномерно увеличивается вдоль протяжки. Главным движение" является продольное перемещение инструмента, движение подачи отсутствует. Протягивание — производительный метод обработки, обеспечивающий высокую точность и малую шероховатость обработанной по­верхности заготовки 2.

Шлифование (рис. 21.2, е, ж). При шлифовании главным движением является вращение шлифовального круга 1. Движение подачи обычно комбинированное и слагается из нескольких движений. Например, при круглом внешнем шлифовании — это вращение заготовки 2, продольном — перемещение ее относительно шлифовального круга и периодическое перемещение шлифовального круга относительно заготовки.

Шлифованием пользуются для окончательной обработки поверхнос­тей деталей. Чаще всего применяют следующие его методы: 1) круглое внешнее шлифование (рис. 21.2, е) для обработки внешних поверхностей вращения; б) круглое внутреннее шлифование — для обработки отверстий; в) плоское шлифование (рис. 21. 2, ж) для обработки плоскостей.

Обработка резанием является универсальным методом размерной обработки. Метод позволяет обрабатывать поверхности деталей различной формы и размеров с высокой точностью из наиболее используемых конструкционных материалов. Он обладает малой энергоемкостью и высокой производительностью. Вследствие этого обработка резанием является основным, наиболее используемым в промышленности процессом размерной обработки деталей.

Сущность и схемы способов обработки

Обработка резанием — это процесс получения детали требуемой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей за счет механического срезания с поверхностей заготовки режущим инструментом материала технологического припуска в виде стружки (рис. 1.1).

Основным режущим элементом любого инструмента является режущий клин (рис. 1.1, а). Его твердость и прочность должны существенно превосходить твердость и прочность обрабатываемого материала, обеспечивая его режущие свойства. К инструменту прикладывается усилие резания, равное силе сопротивления материала резанию, и сообщается перемещение относительно заготовки со скоростью ν. Под действием приложенного усилия режущий клин врезается в заготовку и, разрушая обрабатываемый материал, срезает с поверхности заготовки стружку. Стружка образуется в результате интенсивной упругопластической деформации сжатия материала, приводящей к его разрушению у режущей кромки, и сдвигу в зоне действия максимальных касательных напряжений под углом φ. Величина φ зависит от параметров резания и свойств обрабатываемого материала. Она составляет

Читайте также:  Полиэфирная и эпоксидная смола в чем разница

30° к направлению движения резца.

Внешний вид стружки характеризует процессы деформирования и разрушения материала, происходящие при резании. Различают четыре возможных типа образующихся стружек: сливная, суставчатая, элементная и стружка надлома (рис. 1.1, б).

Рис. 1.1. Условная схема процесса резания:

а – 1 – обрабатываемый материал; 2 – стружка; 3 – подача смазочно-охлаждающих средств; 4 – режущий клин; 5 – режущая кромка; φ – угол сдвига, характеризующий положение условной плоскости сдвига (П) относительно плоскости резания; γ – главный передний угол режущего клина; Рz – сила резания; Рy – сила нормального давления инструмента на материал; Сγ u , Сγ l – длины пластичного и упругого контактов; Сγ , Сa – длина зон контактного взаимодействия по передней и задней поверхностям инструмента; LOM – область главного упругопластичного деформирования при стружкообразовании; FKPT – область вторичной контактной упруго–пластичнеской деформации металла; h – глубина резания; Н – толщина зоны пластического деформирования (наклепа) металла.

В процессе резания режущий клин, испытывая интенсивное трение, контактирует с материалом стружки и обработанной поверхностью в контактных зонах. Для снижения сил трения и нагрева инструмента применяют принудительное охлаждение зоны резания смазочно-охлаждающими средами (СОС), подавая их в зону резания специальными устройствами.

Детали и инструменты закрепляются в специальных органах станка или приспособлениях. Станок, приспособление, инструмент и деталь образуют силовую систему (СПИД), передающую усилие и движение резания от привода станка режущему инструменту и детали.

Реальные схемы различных способов обработки резанием, используемый инструмент, а также виды движения инструмента и заготовки в процессе обработки приведены на рис. 1.2. В зависимости от используемого типа инструмента способы механической обработки подразделяются на лезвийную и абразивную.

Рис. 1.2. Схемы способов обработки резанием:

а – точение; б – сверление; в – фрезерование; г – строгание; д – протягивание; е – шлифование; ж – хонингование; з – суперфиниширование; Dr – главное движение резания; Ds – движение подачи; Ro – обрабатываемая поверхность; R – поверхность резания; Rоп – обработанная поверхность; 1 – токарный резец; 2 – сверло; 3 – фреза; 4 – строгальный резец; 5 – протяжка; 6 – абразивный круг; 7 – хон; 8 – бруски; 9 – головка.

Отличительной особенностью лезвийной обработки является наличие у обрабатываемого инструмента остройрежущей кромки определенной геометрической формы, а для абразивной обработки – наличие различным образом ориентированных режущих зерен абразивного инструмента, каждое из которых представляет собой микроклин.

Рис. 1.3. Конструкция и элементы лезвийных режущих инструментов:

а – токарного резца; б – фрезы; в – сверла;

1 – главная режущая кромка; 2 – главная задняя поверхность; 3 – вершина лезвия; 4 – вспомогательная задняя поверхность лезвия; 5 – вспомогательная режущая кромка; 6 – передняя поверхность; 7 – крепежная часть инструмента.

Рассмотрим конструкцию лезвийных инструментов, используемых при резании (рис. 1.3). Инструмент состоит из рабочей части, включающей режущие лезвия, образующие их поверхности, режущие кромки и крепежной части, предназначенной для установки и закрепления в рабочих органах станка.

Основными способами лезвийной обработки являются точение, сверление, фрезерование, строгание и протягивание. К абразивной обработке относятся процессы шлифования, хонингования и суперфиниша. В основу классификации способов механической обработки заложен вид используемого инструмента и кинематика движений. Так, в качестве инструмента при точении используются токарные резцы, при сверлении – сверла, при фрезеровании – фрезы, при строгании – строгальные резцы, при протягивании – протяжки, при шлифовании – шлифовальные круги, при хонинговании – хоны, а при суперфинише – абразивные бруски. Любой способ обработки включает два движения (рис. 1.2.): главное – движене резания Dr – и вспомогательное – движение подачи Ds . Главное движение обеспечивает съем металла, а вспомогательное – подачу в зону обработки следующего необработанного участка заготовки. Эти движения осуществляются за счет перемещения заготовки или инструмента. Поэтому при оценках движение инструмента во всех процессах резания удобно рассматривать при неподвижной заготовке как суммарное (рис. 1.4).

Рис. 1.4. Схемы определения максимальной скорости режущей кромки инструмента υе , формы поверхности резания R и глубины резания h при обработке:

а – точением; б – сверлением; в – фрезерованием; г – строганием; д– протягиванием; е – хонингованием; ж – суперфинишированием.

Тогда полная скорость перемещения (ve ) произвольной точки Мрежущей кромки складывается из скорости главного движения (v) и скорости подачи (vs ):

Поверхность резания R представляет собой поверхность, которую описывает режущая кромка или зерно при осуществлении суммарного движения, включающего главное движение и движение подачи. При точении, сверлении, фрезеровании, шлифовании поверхности резания — пространственные линейчатые, при строгании и протягивании — плоские, совпадающие с поверхностями главного движения; при хонин-говании и суперфинишировании они совпадают с поверхностями главного движения.

Поверхности Ro и Ro п называются, соответственно, обрабатываемой поверхностью заготовки и обработанной поверхностью детали (см. рис. 1.2).

В процессах точения, сверления, фрезерования и шлифования главное движение и движение подачи выполняются одновременно, а в процессах строгания, хонингования движение подачи выполняется после главного движения.

2. Параметры технологического процесса резания

К основным параметрам режима резания относятся скорость главного движения резания, скорость подачи и глубина резания.

Скорость главного движения резания (или скорость резания) определяется максимальной линейной скоростью главного движения режущей кромки инструмента. Эта скорость выражается в м/с.

Если главное движение резания вращательное, как при точении, сверлении, фрезеровании и шлифовании, то скорость резания будет определяться линейной скоростью главного движения наиболее удаленной от оси вращения точки режущей кромки — максимальной линейной скоростью главного движения (см. рис. 1.4):

где D — максимальный диаметр обрабатываемой поверхности заготовки, определяющий положение наиболее удаленной от оси вращения точки режущей кромки, м; ω — угловая скорость, рад/с.

Выразив угловую скорость ω через частоту вращения шпинделя станка, получим:

При строгании и протягивании скорость резания v определяется скоростью перемещения строгального резца и протяжки в процессе резания относительно заготовки.

При хонинговании и суперфинишировании скорость резания определяется с учетом осевого перемещения (см. рис. 1.4, е, ж) инструмента.

Скорость резания оказывает наибольшее влияние на производительность процесса, стойкость инструмента и качество обработанной поверхности.

Подача инструмента определяется ее скоростью vs . В технологических расчетах параметров режима при точении, сверлении, фрезеровании и шлифовании используется понятие подачи на один оборот заготовки So и выражается в мм/об. Подача на оборот численно соответствует перемещению инструмента за время одного оборота:

При строгании подача определяется на ход резца. При шлифовании подача может указываться на ход или двойной ход инструмента. Подача на зуб при фрезеровании определяется числом зубьев Z инструмента и подачей на оборот:

Читайте также:  Поцелуй в правую щеку что означает

Основные методы обработки металлов резанием.

Процесс обработки деталей резанием основан на образовании новых поверхностей путем деформирования и последующего отделения поверхностных слоев материала с образованием стружки. Та часть металла, которая снимается при обработке, называется припуском. Или, говоря иначе, припуск — это избыточный (сверх чертежного размера) слой заготовки, оставляемый для снятия режущим инструментом при операциях обработки резанием.

Основные методы обработки металлов резанием. В зависимости от характера выполняемых работ и вида режущего инструмента различают следующие методы обработки металлов резанием: точение, фрезерование, сверление, зенкерование, долбление, протягивание, развертывание и др. (рис. 2.1).

Точеие — операция обработки тел вращения, винтовых и спиральных поверхностей резанием при помощи резцов на станках токарной группы. При точении (рис. 2.1, 1) заготовке сообщается вращательное движение (главное движение), а режущему инструменту (резцу) — медленное поступательное перемещение в продольном или поперечном направлении (движение подачи).

Фрезерование — высокопроизводительный и распространенный процесс обработки материалов резанием, выполняемое на фрезерных станках. Главное (вращательное) движение получает фреза, а движение подачи в продольном направлении — заготовка (рис. 2.1, 2).

Сверление — операция обработки материала резанием для получения отверстия. Режущим инструментом служит сверло, совершающее вращательное движение (главное движение) резания и осевое перемещение подачи. Сверление производится на сверлильных станках (рис. 2.1, 3).

Строгание — способ обработки резанием плоскостей или линейчатых поверхностей. Главное движение (прямолинейное возвратно-поступательное) совершает изогнутый строгальный резец, а движение подачи (прямолинейное, перпендикулярное главному движению, прерывистое) — заготовка. Строгание производится на строгальных станках (рис. 2.1, 4).

Долбление — способ обработки резцом плоскостей или фасонных поверхностей. Главное движение (прямолинейное возвратно-поступательное) совершает резец, а движение подачи (прямолинейное, перпендикулярное главному движению, прерывистое) — заготовка. Долбление производят на долбежных станках (рис. 2.1, 5).

Шлифование — процесс чистовой и отделочной обработки деталей машин и инструментов посредством снятия с их поверхности тонкого слоя металла шлифовальными кругами, на поверхности которого расположены абразивные зерна.

Рис. 2.1. Основные методы обработки металлов резанием

Главное движение вращательное, которое осуществляется шлифовальным кругом. При круглом шлифовании (рис. 2.1, 6) вращается одновременно и заготовка. При плоском шлифовании продольная подача осуществляется обычно заготовкой, а поперечная подача — шлифовальным кругом или заготовкой (рис. 2.1, 7).

Протягивание — процесс, производительность при котором в несколько раз больше, чем при строгании и даже фрезеровании. Главное движение прямолинейное и реже вращательное (рис. 2.1, 8).

Абразивные материалы

Абразивная обработка осуществляется твердыми и термо­стойкими зернами, имеющими острые кромки. В абразивных инструментах (шлифовальных и заточных кругах, брусках и шкурках) зерна находятся в связанном состоянии. Применяется также обработка свободными зернами в виде порошков, суспен­зий и паст. К естественным абразивным материалам относятся наждак, корунд и природные алмазы. Однако их применяют сравнитель­но редко — первые в связи с неоднородностью и недостаточной стабильностью своих свойств, а алмазы — из-за дефицитности и высокой стоимости. Среди искусственных материалов наибольшее использова­ние нашел электрокорунд, получаемый электродуговой плавкой глинозема. Нормальный электрокорунд, который может быть трех видов и обозначается марками 13А, НА и 15А, содержит 91—96 % кристаллической окиси алюминия А123. Инструменты из него обычно имеют светло-коричневый цвет. В электроко­рунде белом (23А—25А) всего 1—3 % примесей, благодаря чему выше режущие свойства. Его применяют для чистовой обработ­ки материалов с высокой прочностью на разрыв (сталь, ковкий чугун, мягкая бронза). Разновидность электрокорунда — монокорунд (43А—45А), получаемый в виде отдельных кристаллов или их осколков. Его используют для окончательного шлифования труднообрабаты­ваемых сталей и сплавов. Для повышения производительности обработки применяют электрокорунды, легированные хромом, титаном, цирконием. Карбид кремния SiC (карборунд) получают сплавлением в электропечах кремнезема, содержащегося в кварцевом песке, с углеродом (коксовым порошком). Он бывает двух видов: менее качественный черный (53С—55С) и зеленый (63С, 64С), для из­готовления которого используют более чистые исходные мате­риалы. J Карбид бора В4С по твердости приближается к алмазу, но обладает еще большей хрупкостью, чем карбид кремния. Поэто­му его обычно применяют в свободном состоянии для доводки различных твердых материалов и сплавов. В качестве абразив­ных материалов в последнее время широко используют также эльбор и синтетические алмазы, описанные в 8.7. Чистота обработанной поверхности при абразивной обработ­ке в значительной степени зависит от размеров зерен, которые принято делить на четыре основные группы: шлифзерно, шлиф-порошки, микрошлифпорошки и тонкие микрошлифпорошки. Зернистость, характеризующая размеры зерен, обозначается для первых двух групп в сотых долях миллиметра и определяет­ся по размеру стороны квадратной ячейки сита в «просвете», через которые не проходят зерна при просеивании. Например, при зернистости 80 зерна задерживаются на сите с ячейками 0,8 х 0,8 мм Важная характеристика абразивных инструментов — твер­дость, под которой понимают способность связки удерживать абразивные зерна от выкрашивания под действием внешних сил. Чем мягче инструмент, тем легче из него выкрашиваются зерна, прежде всего затупившиеся.

Правка и гибка металла

Правкой называется операция по устранению дефектов загото­вок и деталей в виде вогнутости, выпуклости, волнистости, короб­ления, искривления и т. д. Ее сущность заключается в сжатии выпуклого слоя металла и расширении вогнутого Металл подвергается правке как в холодном, так и в нагретом состоянии. Выбор того или иного способа правки зависит от вели­чины прогиба, размеров и материала изделия. Правка может быть ручной — на стальной или чугунной пра­вильной плите или машинной — на правильных вальцах или прес­сах. Ручную правку производят специальными молотками с круглым, радиусным или вставным из мягкого металла бойком. Тонкий ли­стовой металл правят киянкой. При правке металла очень важно правильно выбрать места, по которым следует наносить удары. Силу удара необходимо соизме­рять с величиной кривизны металла и уменьшать по мере перехода от наибольшего прогиба к наименьшему. Для правки полосового металла полосу кла­дут на плиту и, поддерживая ее левой рукой, правой наносят удары молотком по выпуклым местам. По мере необходимости полосу по­ворачивают с одной стороны на другую Правку металла круглого сечения с диамет­ром до 12 мм можно производить также на плите или наковальне. Если пруток имеет несколько изгибов, то правят сначала край­ние, а затем расположенные в середине. По мере выправления из­гиба силу ударов уменьшают, заканчивая правку легкими ударами и поворачиванием прутка вокруг оси. Наиболее сложной является правка листового ме­талла. Лист кладут на плиту выпуклостью вверх. Поддержи­вая лист левой рукой, правой наносят удары молотком от края листа по направлению к выпуклости. Под действием ударов ровная часть листа будет вытягиваться, а выпуклая — выправляться.

Гибка металловпо приемам работы и характеру рабочего про­цесса близка к правке. Сущность ее заключается в том, что одна часть заготовки перегибается по отношению к другой на какой-либо заданный угол. Напряжения изгиба должны превышать пре­дел упругости, а деформация заготовки — быть пластической. Только в этом случае заготовка сохранит приданную ей форму после снятия нагрузки. Гибка металлов применяется для придания заготовке. изогну­той формы согласно чертежу. Ручную гибку производят в тисках с помощью слесарного мо­лотка и различных приспособлений. Последовательность выполне­ния гибки зависит от размеров контура и материала заготовки. Гибку тонкого листового металла произво­дят киянкой. При использовании для гибки металлов различных оправок их форма должна соответствовать форме профиля детали с учетом деформации металла. Выполняя гибку заготовки, важно правильно определить ее размеры. Расчет длины заготовки выполняют по чертежу с учетом радиусов всех изгибов. Для деталей, изгибаемых под прямым уг­лом без закруглений с внутренней стороны, припуск заготовки на изгиб должен составлять от 0,6 до 0,8 толщины металла. При гибке надо учитывать, что после снятия нагрузки угол загиба несколько увеличивается. Изготовление деталей с очень малыми радиусами изгиба свя­зано с опасностью разрыва наружного слоя заготовки в месте из­гиба Гибку труб производят с наполнителем (обычно сухой речной песок) или без него. Это зависит от материала трубы, ее диаметра и радиуса изгиба. Наполнитель предохраняет стенки трубы от образования в местах изгиба складок и морщин (гофров). Холодную гибку труб с наполнителем выполняют в следующем порядке. Один конец трубы плотно за­крывают деревянной пробкой. Через второй наполняют трубу су­хим песком. При этом слегка постукивают по трубе молотком чтобы песок уплотнился. После этого второй конец трубы также забивают пробкой. Намечают мелом место изгиба и устанавливают трубу в приспособление (рис. 68). Если труба сварная, то шов должен находиться сбоку изгиба. Берут трубу за длинный конец и осторожно сгибают на заданный угол. После проверки получен­ного угла шаблоном или по образцу вынимают трубу из приспо­собления, выбивают пробки и высыпают песок. Горячую гибку труб выполняют, как правило, с наполнителем. Труба также заполняется песком, но в пробках дела­ют небольшие отверстия для выхода газов, образующихся при на­гревании трубы. Нагревают место изгиба паяльной лампой или газовой горелкой до температуры 850—900 °С и сгибают в при­способлении до заданного угла. Длина нагреваемого участка при изгибе под углом 90° должна быть равной шести диаметрам трубы, при угле 60° — четырем, а при угле 45° — трем диаметрам трубы. Закончив гибку, трубу охлаждают водой, выбивают пробки и осво­бождают ее от песка.

Читайте также:  Поменять кнопку вкл на болгарке

25. Клепка металла (типы заклепок, виды швов)

Клепкойназывается процесс соединения нескольких деталей (обычно из листового материала) при помощи заклепок. Заклепочные соединения применяют при изготовлении различных металлических конструкций. Широкое распространение они имеют в самолетостроении, судостроении и других отраслях производств

Рис. 87. Основные типы заклепок:

а — заклепочное соединение (/ — стержень заклепки; 2 — замыкающая головка; S — закладная головка); б — заклепка с полукруглой головкой; в — заклепка с полупотай­ной головкой; г — заклепка с потайной головкой; д — заклепка с плоскоконической головкой; е — заклепка с плоской головкой; ж — заклепка с сердечником; э » заклеп­ка с сердечником повышенной прочности; и ■— взрывная заклепка.

Заклепка (рис. 87, а) состоит из стержня и закладной головки. Замыкающую головку образуют непосредственно при клепке. Го­ловки заклепок бывают полукруглые, потайные, полупотайные и плоские (рис. 87, бе). Изготовляют заклепки из стали, цветных металлов и сплавов. Разделяют клепки на холодную, т. е. выполняемую без нагрева заклепок, и горячую — с нагревом стальных заклепок до 1000 — 1100 °С. В практике занятий в учебных мастерских используют обычно холодную клепку с применением заклепок диаметром не свыше 8 мм. Диаметр отверстия под заклепку делают несколько больше, чем диаметр самой заклепки. Длину заклепки выбирают такой, чтобы ее свободный конец (выходящий за край отверстия) состав­лял 1,25—1,5 диаметра стержня и можно было образовать полу­круглую головку. Для образования потайной головки эта вели­чина должна составлять 0,8—1,2 диаметра стержня. Место соединения деталей заклепками называют заклепочным швом. Заклепочные швы подразделяют на прочные (выдерживаю­щие большие нагрузки), плотные (герметичные) и прочноплотные (рассчитанные на одновременное действие больших механических нагрузок и высоких давлений). Швы могут быть однорядными (заклепки расположены в один ряд) и многорядными. Расстояние между центрами заклепок на­зывают шагом заклепочного шва.

Основные методы обработки металлов резанием.

Процесс обработки деталей резанием основан на образовании новых поверхностей путем деформирования и последующего отделения поверхностных слоев материала с образованием стружки. Та часть металла, которая снимается при обработке, называется припуском. Или, говоря иначе, припуск — это избыточный (сверх чертежного размера) слой заготовки, оставляемый для снятия режущим инструментом при операциях обработки резанием.

Основные методы обработки металлов резанием. В зависимости от характера выполняемых работ и вида режущего инструмента различают следующие методы обработки металлов резанием: точение, фрезерование, сверление, зенкерование, долбление, протягивание, развертывание и др. (рис. 2.1).

Точеие — операция обработки тел вращения, винтовых и спиральных поверхностей резанием при помощи резцов на станках токарной группы. При точении (рис. 2.1, 1) заготовке сообщается вращательное движение (главное движение), а режущему инструменту (резцу) — медленное поступательное перемещение в продольном или поперечном направлении (движение подачи).

Фрезерование — высокопроизводительный и распространенный процесс обработки материалов резанием, выполняемое на фрезерных станках. Главное (вращательное) движение получает фреза, а движение подачи в продольном направлении — заготовка (рис. 2.1, 2).

Сверление — операция обработки материала резанием для получения отверстия. Режущим инструментом служит сверло, совершающее вращательное движение (главное движение) резания и осевое перемещение подачи. Сверление производится на сверлильных станках (рис. 2.1, 3).

Строгание — способ обработки резанием плоскостей или линейчатых поверхностей. Главное движение (прямолинейное возвратно-поступательное) совершает изогнутый строгальный резец, а движение подачи (прямолинейное, перпендикулярное главному движению, прерывистое) — заготовка. Строгание производится на строгальных станках (рис. 2.1, 4).

Долбление — способ обработки резцом плоскостей или фасонных поверхностей. Главное движение (прямолинейное возвратно-поступательное) совершает резец, а движение подачи (прямолинейное, перпендикулярное главному движению, прерывистое) — заготовка. Долбление производят на долбежных станках (рис. 2.1, 5).

Шлифование — процесс чистовой и отделочной обработки деталей машин и инструментов посредством снятия с их поверхности тонкого слоя металла шлифовальными кругами, на поверхности которого расположены абразивные зерна.

Рис. 2.1. Основные методы обработки металлов резанием

Главное движение вращательное, которое осуществляется шлифовальным кругом. При круглом шлифовании (рис. 2.1, 6) вращается одновременно и заготовка. При плоском шлифовании продольная подача осуществляется обычно заготовкой, а поперечная подача — шлифовальным кругом или заготовкой (рис. 2.1, 7).

Протягивание — процесс, производительность при котором в несколько раз больше, чем при строгании и даже фрезеровании. Главное движение прямолинейное и реже вращательное (рис. 2.1, 8).

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Ссылка на основную публикацию
Adblock
detector