Аппарат плазменной резки как работает

Аппарат плазменной резки как работает

Плазменная резка – одна из наиболее современных эффективных технологий, позволяющая работать с металлом, а также с некоторыми материалами, не проводящими ток, в том числе древесиной, пластиком и камнем.

Неудивительно, что метод пользуется спросом и активно применяется в различных сферах деятельности, в ЖКХ, в строительстве, промышленности. Главным устройством во всем процессе является плазморез, продуцирующий дугу, сформированную плазмой огромной температуры.

Дуга позволяет вести работу с высокой точностью, проводить раскрой не только по прямым линиям, но и формировать сложные фигуры.

Чтобы разобраться в тонкостях всего процесса, рассмотрим подробнее конструкцию устройства, а также основные принципы, на которых построено его функционирование.

Конструкция

Плазморезка сформирована следующими элементами:

1. Элемент питания, который отвечает за подачу тока той или иной силы. В качестве элемента применяют либо трансформаторы, либо инверторы.

Первый вариант характеризуется значительной массой, зато почти неуязвим для колебаний напряжения, а также дает возможность осуществлять рез металлических заготовок огромной толщины.

Инвертор – хороший выбор в том случае, если манипуляции ведутся с не слишком толстыми заготовками. Они экономичны в отношении потребления энергии, характеризуются высоким КПД и рекомендуются для использования в частном хозяйстве.

2. Плазмотрон. Основной элемент, посредством которого и ведется рез.

Корпус детали скрывает электрод, отвечающий за формирование мощной дуги. Сделан электрод из тугоплавкого металла, благодаря чему исключены его деформации и разрушения вследствие высокотемпературных нагрузок. Как правило, используется гафний, как наиболее прочный и безопасный материал.

На конце находится сопло, формирующее струю плазмы, с легкостью разрезающую заготовку.

Производительность и мощность устройства, во многом, определяется именно диаметром сопла. Чем шире сопло, тем больше воздуха оно пропускает за единицу времени, а увеличение объемов воздуха непосредственно увеличивает производительность. Наиболее распространенный диаметр – 3 миллиметра.

Точность работы зависит от конфигурации сопла, для проведения наиболее тонкой работы следует подбирать удлиненный элемент.

3. Компрессор. Его главная задача – нагнетание воздуха, без которого плазменный резак по металлу просто не может функционировать. Процесс построен на использовании газа для формирования плазменной струи и защиты.

Если сила тока устройства ограничена 200А, то необходим просто сжатый воздух, его достаточно и для отвода лишнего тепла, и для формирования струи. Такая модель – оптимальное решение в случаях, когда режутся заготовки не толще 5 сантиметров.

Установки промышленного типа используют не обычный сжатый воздух, а концентрированные газовые смеси на основе гелия, водорода, азота.

4. Комплекс кабелей и шлангов соединяет все модули между собой. Шланги транспортируют сжатый воздух, кабеля передают электрический ток.

Смотрите полезное видео, устройство и как работает плазменная резка:

Рабочий принцип

Теперь изучим непосредственно принцип работы устройства.

Когда оператор нажимает на клавишу розжига, элемент питания подает ток на плазмотрон. Это приводит к формированию первичной дуги огромной температуры, которая составляет от 6 до 8 тысяч градусов.

Формирование дуги между наконечником электрода и сопла происходит из-за того, что крайне трудно добиться такого результата непосредственно между заготовкой и электродом. Более того, если работа ведется с материалом, характеризующимся изолирующими свойствами, это просто невозможно.

Когда сформирована первичная дуга, к ней подается воздушная смесь. Данный воздух контактирует с ней, его температура растет, а объем – увеличивается, причем увеличение может быть даже стократным. Вдобавок к этому, воздух теряет свои диэлектрические свойства, ионизируется.

За счет того, что сопло имеет сужение к своему окончанию, воздушный поток разгоняется до 2-3 метров в секунду и вырывается наружу, имея температуру почти в 30 тысяч градусов. Из-за высокой степени ионизации и огромной температуры воздух называется плазмой, показатель электрической проводимости которой равняется этому параметру у обрабатываемого металла.

В момент соприкосновения с обрабатываемой поверхностью первичная дуга угасает, а дальнейшая работа ведется уже за счет вновь образованной режущей дуги. Именно она плавит или прожигает материал. Рез получается ровным, так как мощный воздушный поток сдувает с поверхности все появляющиеся частички.

Такое описание того, как работает система, является наиболее простым и распространенным.

Области применения

Теперь рассмотрим, что им можно делать:

  • Оперативный рез больших объемов материалов.
  • Изготовление листовых деталей, характеризующихся сложностью геометрии, вплоть до ювелирной и приборостроительной отрасли, где требуется максимальное соответствие исходным чертежам.

Штамповка в такой ситуации не применяется, так как данная технология, хоть и дешево, не обеспечивает достаточной точности. Плазморез же, несмотря на огромную температуру струи, нагревает обрабатываемый элемент точечно, что полностью исключает вероятность температурной деформации.

  • Монтаж металлических конструкций. Плазморез исключает нужду в применении баллонов со сжатым кислородом и ацетиленом, что повышает степень безопасности и удобства, в особенности, если дело касается осуществления операций на высоте.
  • Рез сталей высокой степени легирования. Механические способы в данном случае не подходят, так как прочность сталей огромна, инструмент, способный эффективно резать листы на их основе, будет стоить очень дорого, а изнашиваться – очень быстро.

Получается, что сферы использования разнообразны. Выполнение в металлических листах отверстий любой конфигурации, резка труб, уголков и заготовок другого сечения, обработка кромок кованых изделий с целью “спаивания” металла и закрытия его структуры – для всего этого плазморез подходит оптимально.

Основные инструкции

Несколько правил, позволяющие понять, как резать плазморезом эффективно и безопасно:

  1. Необходимо контролировать расположение катодного пятна, оно должно соответствовать центру электрода. Достигается такая точность вихревой подачей воздуха. Отклонения в подаче приводят к тому, что происходит смещение плазменной дуги, она теряет стабильность горения. В некоторых случаях формируется вторая дуга, а в самой сложной ситуации устройство просто ломается.
  2. Контроль над воздушным расходом дает возможность корректировать скорость потока плазмы, варьировать производительность.
  3. Скорость реза напрямую влияет на толщину. Чем выше скорость, тем тоньше рез, ее уменьшение увеличивает ширину. Аналогичных результатов, большей ширины, можно достичь и увеличением силы тока.

Смотрите видео-урок работы плазморезом:

Заключение

Итак, мы разобрались, что такое плазморез.

Можно сделать вывод, что в ситуации, когда вам регулярно приходится работать с металлическими элементами, резать арматуру, трубы или другие детали, его помощь окажется полезной. Так что расходы на его покупку будут полностью компенсированы удобством и эффективностью дальнейшей работы.

Технология плазменной резки крайне редко применяется в быту, зато в промышленной сфере получила очень широкое распространение. Благодаря тому, что с помощью плазмореза можно легко, быстро и качественно разрезать практически любой токопроводящий металл, а также другие материалы – камень и пластик, его используют в машиностроении, судостроении, коммунальной сфере, изготовлении рекламы, для ремонта техники и многого другого. Срез всегда получается ровным, аккуратным и красивым. Тех, кто только собрался освоить данную технологию, может интересовать резонный вопрос, что собой представляет аппарат плазменной резки, каков принцип его работы, а также какие разновидности плазморезов бывают и для чего используется каждый из них. Все это даст общее понимание технологии плазменной резки, позволит сделать правильный выбор при покупке и освоить работу с аппаратом.

Принцип работы аппарата плазменной резки металла

Как работает плазморез? И что подразумевается под словом «плазма»? Для работы плазмореза необходимо только две вещи – электричество и воздух. Источник энергии подает на резак (плазмотрон) токи высокой частоты, благодаря чему в плазмотроне возникает электрическая дуга, температура которой 6000 – 8000 °С. Затем в плазмотрон направляется сжатый воздух, который на большой скорости вырывается из патрубка, проходит через электрическую дугу, нагревается до температуры 20000 – 30000 °С и ионизируется. Воздух же, который ионизировался, теряет свойства диэлектрика и становится проводником электричества. Плазмой как раз и является этот воздух.

Вырываясь из сопла, плазма локально разогревает заготовку, в которой необходимо выполнить рез, металл плавится. Образованные на лобовой поверхности реза частички расплавленного металла сдуваются потоком воздуха, вырывающимся на огромной скорости. Так происходит резка металла.

Читайте также:  Huayu rm sat1111 b инструкция

Скорость плазменного потока (разогретого ионизированного воздуха) возрастает, если увеличить расход воздуха. Если же увеличить диаметр сопла, через которое плазма вырывается, то скорость уменьшится. Параметры скорости плазмы примерно таковы: на токе 250 А она может быть 800 м/с.

Чтобы рез получился ровным, плазмотрон необходимо держать перпендикулярно плоскости реза, максимальное допустимое отклонение 10 – 50 °. Также большое значение имеет скорость реза. Чем она меньше, тем ширина реза становится больше, а поверхности реза становятся параллельными. То же самое происходит при увеличении силы тока.

Если увеличить расход воздуха, то ширина реза уменьшится, зато кромки реза станут непараллельными.

Устройство аппарата плазменной резки

Аппарат плазменной резки состоит из источника питания, плазмотрона и кабель-шлангового пакета, с помощью которого соединяются источник питания и компрессор с плазмотроном.

Источником питания для аппарата плазменной резки может служить трансформатор или инвертор, которые подают на плазмотрон большую силу тока.

Плазмотрон, собственно, и является главным элементом аппарата – плазменным резаком. Иногда по ошибке весь аппарат называют плазмотроном. Возможно, это связано с тем, что источник питания для плазмореза не отличается никакой уникальностью, а может быть использован вместе со сварочным аппаратом. А единственным элементом, отличающим плазморез от другого аппарата, и является плазмотрон.

Основные составляющие плазмотрона – электрод, сопло и изолятор между ними.

Внутри корпуса плазмотрона находится цилиндрическая камера малого диаметра, выходной канал из которой довольно мал и позволяет формировать сжатую дугу. В тыльной стороне дуговой камеры располагается электрод, служащий для возбуждения электрической дуги.

Электроды для воздушно-плазменной резки могут быть изготовлены из бериллия, гафния, тория или циркония. На поверхности этих металлов образуются тугоплавкие оксиды, предотвращающие разрушение электрода. Но для образования этих оксидов нужны определенные условия. Самыми распространенными являются электроды из гафния. А вот из бериллия и тория их не делают, и виной тому те самые оксиды: оксид бериллия – крайне радиоактивен, а оксид тория – токсичен. Все это может крайне негативно сказаться на работе оператора.

Так как возбуждение электрической дуги между электродом и заготовкой обрабатываемого металла напрямую затруднительно, сначала зажигается так называемая дежурная дуга – между электродом и наконечником плазмотрона. Столб этой дуги заполняет весь канал. После этого в камеру начинает подаваться сжатый воздух, который, проходя сквозь электрическую дугу, нагревается, ионизируется и увеличивается в объеме в 50 – 100 раз. Сопло плазмотрона сужено книзу и формирует из разогретого ионизированного газа/воздуха поток плазмы, вырывающийся из сопла со скоростью 2 – 3 км/с. При этом температура плазмы может достигать 25 – 30 тыс. °С. В таких условиях электропроводимость плазмы становится примерно такой же, как и у обрабатываемого металла.

Когда плазма выдувается из сопла и касается факелом обрабатываемого изделия, образуется режущая плазменная дуга – рабочая, а дежурная дуга гаснет. Если вдруг по какой-то причине рабочая дуга тоже погасла, необходимо прекратить подачу воздуха, снова включить плазмотрон и сформировать дежурную дугу, а затем пустить сжатый воздух.

Сопло плазмотрона может иметь различные размеры и от этого зависят возможности всего плазмотрона и технология работы с ним. Например, от диаметра сопла плазмотрона зависит количество воздуха, которое может проходить сквозь этот диаметр за единицу времени. От количества расхода воздуха зависит ширина реза, скорость работы и скорость охлаждения плазмотрона. В плазморезах используют сопла не больше 3 мм диаметром, зато довольно длинные – 9 – 12 мм. Длина сопла влияет на качество реза, чем длиннее сопло, тем качественнее рез. Но здесь нужно быть осторожным, везде важна мера, так как слишком большое сопло будет быстрее изнашиваться и разрушаться. Оптимальной считается длина, в 1,5 – 1,8 раз больше диаметра сопла.

Крайне важно, чтобы катодное пятно фокусировалось строго по центру катода (электрода). Для этого используют вихревую подачу сжатого воздуха/газа. Если вихревая (тангенциальная) подача воздуха нарушена, то катодное пятно будет смещаться относительно центра катода вместе с дугой. Все это может привести к нестабильному горению плазменной дуги, образованию двойной дуги и даже выходу плазмотрона из строя.

В процессе плазменной резки используются плазмообразующие и защитные газы. В аппаратах плазменной резки с силой тока до 200 А (можно разрезать металл толщиной до 50 мм) используют только воздух. В таком случае воздух является плазмообразующим газом и защитным, а также охлаждающим. В сложных промышленных портальных аппаратах используют другие газы – азот, аргон, водород, гелий, кислород и их смеси.

Сопло и электрод в аппарате плазменной резки являются расходными материалами, которые необходимо своевременно заменять, не дожидаясь их полного износа.

В основном плазморезы принято покупать в готовом виде, главное – правильно подобрать нужный агрегат, тогда не придется ничего «доделывать напильником». Хотя в нашем отечестве есть «Кулибины», которые могут сделать аппарат плазменной резки своими руками, закупив некоторые детали отдельно.

Разновидности аппаратов плазменной резки

Плазморезы различают по нескольким различным параметрам. Аппараты плазменной резки могут представлять собой переносные установки, портальные системы, шарнирно-консольные машины, специализированные конструкции и установки с координатным приводом. Особенно выделяются машины плазменной резки с ЧПУ (числовым программным управлением), которые минимизируют вмешательство человека в процесс резки. Но помимо этих существуют и другие градации.

Аппараты для ручной и машинной резки

Ручной аппарат плазменной резки используется для резки металла вручную, когда плазмотрон держит в руках оператор-человек и ведет его по линии реза. В связи с тем, что плазмотрон все время находится на весу над обрабатываемой заготовкой, рука человека может слегка дрогнуть даже в процессе обычного дыхания, все это отражается на качестве реза. На нем могут быть наплывы, неровный рез, следы рывков и т.д. Чтобы облегчить работу оператору, существуют специальные упоры, которые надеваются на сопло плазмотрона. С помощью него можно поставить плазмотрон непосредственно на заготовку и аккуратно вести его. Зазор между соплом и обрабатываемой заготовкой всегда будет одинаковым и соответствующим требованиям.

Аппараты машинной резки представляют собой плазморезы портального типа и аппараты автоматического раскроя деталей и труб. Такие аппараты используются на производстве. Качество реза таким плазморезом получается идеальным, дополнительная обработка кромок не требуется. А программное управление позволяет делать резы различной фигурной формы в соответствии с чертежом без страха дернуть рукой в неподходящий момент. Рез выполняется точно и гладко. На подобные аппараты плазменной резки металла цена на порядок выше, чем на ручные аппараты.

Трансформаторные и инверторные аппараты плазменной резки

Существуют трансформаторные и инверторные плазморезы.

Трансформаторные плазморезы тяжелее инверторных и больше по размеру, зато они более надежны, так как не выходят из строя в случае скачков напряжения. Продолжительность включения таких аппаратов выше, чем у инверторных, и может достигать 100 %. Такой параметр, как продолжительность включения, напрямую влияет на специфику работы с аппаратом. Например, если ПВ равна 40 %, это означает, что 4 минуты резак может работать без перерыва, а затем ему необходимо 6 минут отдыха, чтобы остыть. ПВ 100 % используется в производстве, там, где работа аппарат продолжается весь рабочий день. Недостатком трансформаторного плазмореза является высокое энергопотребление.

Читайте также:  Анкер шпилька hilti hst м10х110 30 цена

С помощью трансформаторных плазменных резаков можно обрабатывать заготовки большей толщины. На подобный аппарат воздушно-плазменной резки цена выше, чем на инверторный. Да и представляет он собой короб на колесиках.

Инверторные аппараты плазменной резки используются чаще в быту и на маленьких производствах. Они намного экономнее в энергопотреблении, обладают меньшим весом и габаритами и чаще всего представляют собой ручной аппарат. Достоинством инверторного плазмореза является стабильное горение дуги и КПД на 30 % выше, компактность и возможность вести работы в труднодоступных местах.

Аппарат воздушно-плазменной резки и водно-плазменной резки

Стоит отметить, что существуют не только аппараты воздушно-плазменной резки, принцип действия которых и устройство были описаны выше, но и аппараты водно-плазменной резки.

Если в воздушно-плазменных резаках воздух выступает и как плазмообразующий, и как защитный, и как охлаждающий газ, то в водно-плазменных резаках вода выступает в качестве охладителя, а водяной пар плазмообразователя.

Достоинствами воздушно-плазменной резки являются низкая цена и небольшой вес, зато недостаток – ограничена толщина разрезаемой заготовки, зачастую не более 80 мм.

Мощность водно-плазменных резаков позволяет разрезать толстые заготовки, зато их цена несколько выше.

Принцип работы аппарата водно-плазменной резки заключается в том, что вместо сжатого воздуха в нем используется водяной пар. Это дает возможность отказаться от использования компрессора для воздуха или газовых баллонов. Водяной пар более вязкий по сравнению с воздухом, поэтому его необходимо намного меньше, запаса в баллончике хватает примерно на месяц-два. Когда в плазмотроне протекает электрическая дуга, в него подается вода, которая испаряется. Одновременно с этим рабочая жидкость поднимает катод отрицательного полюса от катода положительного полюса сопла. В результате загорается электрическая дуга, пар ионизируется. Еще до того, как плазмотрон приблизится к обрабатываемой заготовке, загорается плазменная дуга, которая выполняет резку. Ярким представителем данной категории плазморезов является аппарат Горыныч, на такой аппарат плазменной резки цена около 800 у.е.

Контактные и бесконтактные аппараты плазменной резки

В зависимости от того, включен разрезаемый материал в электрическую схему плазменной резки или нет, зависит тип резки – контактный и бесконтактный.

Контактная плазменная резка или резка плазменной дугой выглядит так: дуга горит между электродом плазмотрона и обрабатываемой деталью. Это еще называется дугой прямого действия. Столб электрической дуги совмещен с плазменной струей, которая вырывается из сопла на большой скорости. Продуваемый через сопло плазмотрона воздух обжимает дугу и придает ей проникающие свойства. За счет высокой температуры воздуха 30000 °С, повышается скорость его истечения и плазма оказывает сильной механическое воздействие на выдуваемый металл.

Контактный тип резки применяется при работах с металлами, которые могут проводить электричество. Это изготовление деталей с прямолинейными и криволинейными контурами, резка труб, полос и прутков, выполнение отверстий в заготовках и многое другое.

Бесконтактная плазменная резка или резка плазменной струей выглядит так: электрическая дуга горит между электродом и формирующим наконечником плазмотрона, часть плазменного столба выносится за пределы плазмотрона через сопло и представляет собой высокоскоростную плазменную струю. Именно данная струя и является режущим элементом.

Бесконтактная резка используется при работе с нетокопроводящими материалами (неметаллами), например, камнем.

Работа с аппаратом плазменной резки и технология воздушно-плазменной резки – это целое искусство, требующее знаний, терпения и соблюдения всех правил и рекомендаций. Знание и понимание устройства плазмореза помогает выполнять работу качественно и аккуратно, так как оператор понимает, какие процессы происходят в плазмотроне и за его пределами в тот или иной момент, и может ими управлять. Также немаловажно соблюдать все меры предосторожности и технику безопасности, например, работать с плазморезом необходимо в костюме сварщика, в щитке, перчатках, в закрытой обуви и плотных штанах из натуральной ткани. Некоторые окислы, выделяемые в процессе резки металла, могут нанести непоправимый вред легким человека, поэтому необходимо работать в защитной маске или хотя бы обеспечить хорошую вентиляцию в рабочей зоне.

Плазменная резка осуществляется аппаратом под названием плазморез. Он создаёт поток высокотемпературного ионизированного воздуха (плазмы), который разрезает заготовку.

Принцип плазменной резки основан на свойстве воздуха в состоянии ионизации становиться проводником электрического тока.

Плазморез создаёт в плазмотроне плазму (ионизированный воздух, разогретый до высокой температуры) и сварочную дугу, которые осуществляют раскрой материала.

Устройство плазмореза

Плазморез состоит из нескольких блоков:

Устройство плазмореза. Плазменная резка осуществляется плазморезом, который состоит из нескольких блоков

  • источник электропитания;
  • плазмотрон (резак);
  • компрессор;
  • комплект кабель-шлангов (отдельно о шлангах тут).

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
  • при питании от него стабильно горит дуга;
  • КПД на 30 % выше, чем у трансформатора;
  • дешевле, экономичнее и легче трансформатора;
  • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция и схема подключения плазмотрона

Конструкция плазмотрона состоит из следующих составляющих:

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

Принцип работы

Результат работы плазмотрона

Принцип действия плазмотрона заключается в следующем. Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Технология плазменной резки металла вкратце может быть описана следующим образом. Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги (между наконечником форсунки и неплавящимся электродом. От искры загорается поток газа, здесь же он ионизируется, превращаясь в управляемую плазму (с крайне высокой, 800 и даже 1500 м/с скоростью выхода).

В выходном отверстии, от сужения, происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20 0000с. Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Плазменно-дуговой способ используется с замыканием обрабатываемой поверхности в проводящий контур. Другой вид резки (плазменной струей) — работает при наличии стороннего (косвенного) образования высокотемпературного компонента в рабочей схеме плазмотрона. Нарезаемый металл не включен в проводящий контур

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток. При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует. Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Плазменно-дуговой резке подвергаются токопроводящие материалы. При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы. Последняя образуется за счет поступления газа, его нагрева и ионизации. Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование. Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл. Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Читайте также:  47H h90 содержание драгметаллов

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу. Кроме того, она охлаждает компоненты плазмотрона и поглощает вредные выделения.

Основанная на указанных принципах плазменная резка обеспечивает не только высокопроизводительное производство, но и совершенно пожаробезопасное: применяемые в технологии материалы не огнеопасны.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка:

Принцип работы воздушно-плазменной резки металла

Воздушно-плазменная резка: на чем основан принцип осуществления. Плазма, производящая резку, является разогретым газом с высоким значением электропроводности . Его еще называют ионизованным. Генерируется плазма специальным дуговым элементом. Принято называть этот способ резки плазменным.

Обычная дуга сжимается плазмотроном. Ионизованный газ вдувается в нее, с помощью чего она может генерировать горячий воздух. Она способна производить обработку, при помощи повышенной температуры.Металл разрезается, плавясь при этом.

Осуществление обработки металла происходит благодаря, как плазменной дуге, так и струе. В первом варианте на металлическое изделие оказывается прямое воздействие, во втором — косвенное. Наиболее распространенным и действенным является метод резки с помощью действия напрямую. Для материала, который не обладает электропроводностью (как правило это неметаллические изделия) применяют способ непрямого влияния. При любом из вариантов разрезаемый материал не теряет агрегатного состояния и его конструкция слабо подвергается деформации.

Принцип работы плазменного резака

Плазмотрон – это техническое устройство, которое образует электрический разряд между электродом (катодом) и поверхностью обрабатываемого изделия (анодом), это происходит в потоке газа который образует плазму.

Принцип работы устройства: для охлаждения применяется вода или газ, для получения плазмы используется плазмообразующий газ. Поток входящего в камеру газа подвергается нагреванию до высоких температур после чего ионизируется, тем самым приобретает свойства плазмы. Плазмообразующий газ и охлаждающий подаются в различные каналы плазматрона. При подаче питания между катодом и соплом образуется так называемый вспомогательный разряд, визуально её можно видеть как небольшой факел.

Основная (рабочая дуга) образуется при касании второстепенного разряда обрабатываемой поверхности, которая в данном случае выполняет роль анода (плюс). Стабилизация разряда может осуществляться магнитным полем, водой либо газом, зачастую стабилизирующий газ является и плазмообразующим. После этого можно проводить резку материала, нанесение покрытий, сварку, наплавку или даже добычу полезных ископаемых, путём разрушения горных пород.

Условно конструкцию плазмотрона можно представить как несколько основных элементов:

  1. изолятор;
  2. электрод;
  3. сопло;
  4. механизм для подвода плазмообразующего газа;
  5. дуговая камера.

Конструкция и принцип работы плазмотрона с совмещенным соплом и каналом

Особенностью плазмотрона, использующего воздушно-плазменную резку является совмещение канала и сопла. Воздух проходит через канал сопла наружу. Принцип работы схож, при подаче электропитания промеж катодом и соплом образуется вспомогательный разряд. Воздух закрученный по спирали, стабилизирует и сжимает столб рабочего разряда. Он же предотвращает соприкосновение электрической дуги стенок соплового канала.

Типы плазмотронов

Плазмотроны можно условно разделить на три глобальных типа

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Устройства работающие на основе электрической дуги оснащены одним катодом, который подключен к источнику питания постоянного тока. Для охлаждения применяют воду, которая находится в охладительных каналах.

Можно выделить следующие виды электродуговых аппаратов

  • с прямой дугой;
  • косвенной дугой (плазмотроны косвенного действия);
  • с использованием электролитического электрода;
  • вращающимися электродами;
  • вращающейся дугой.

Автомат: принцип работы

Станок плазменной автоматической резки имеет:

  1. пульт управления,
  2. плазмотрон
  3. рабочий стол для заготовок.

Автомат для резки (Китай)
Источник фото: ru.made-in-china.com

На пульте управления происходит корректировка предварительно установленных программ, если резка отклоняется от установленных параметров. Для оперативного исправления в процессе работы и выбора оптимальных режимов резания.

Через установленный на рабочем столе лист, пропускается электрический ток. Между поверхностью листа и плазмотроном пробегает первичная электродуга. В которой сжатый воздух, разогревается до состояния плазмы. Первичная дуга скрывается в раскаленной ионизированной струе, которая и режет металла.

Резка начинается с середины или с края. Чем чаще происходит прерывание дуги и зажигание новой искры, тем меньше становится ресурс сопла и катода. Грамотный оператор автоматической резки выбирает режимы резания по таблице и отталкиваясь от конкретных условий (толщина металла, диаметр сопла). Благодаря чему можно добиться значительного сокращения расходов. По окончанию операции, автомат самостоятельно оповестит оператора, выключит и отведет плазмотрон от материала.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие.

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ.

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью, и соответственно, производительностью, и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

Характеристики плазморезов позволяют выполнять обработку нержавеющей стали, что недоступно кислородным горелкам. Плазморезы практически незаменимы для обработки тонкой листовой стали. Особого внимания заслуживают ручные устройства, которые отличаются компактными размерами и экономичным потреблением электроэнергии. Технология плазменно-дуговой резки особенно ценится за выполнение чистого среза без «наплывов», что положительно влияет на скорость и точность выполнения работ, а также на производственные возможности предприятий.

Ссылка на основную публикацию
Adblock detector